Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems
نویسندگان
چکیده
Water deficit is considered the main limiting factor for the establishment, survival, and growth of plants mainly in water-limited ecosystems. Plants have evolved a wide range of morphologic and functional mechanisms to adapt to arid environments. However, if the tension in the xylem conduits becomes too high, thus xylem cavitation can occur i.e., water column breakage. This results in the hydraulic disconnection of leaves and above-ground parts from roots because xylem conduits are filled with air and water vapor, and this phenomenon is called embolism. Therefore, the resistance of the xylem to cavitation and embolism is of paramount importance for plant functioning. In this chapter, we will review the role of plant hydraulics and xylem cavitation in the context of water-limited ecosystems and their relationship with other plant functional traits and with survival capacity. These topics will be analyzed and discussed on the basis of current knowledge and our research experiences. A. Vilagrosa (&) E. Chirino Fundación de la Comunidad Valenciana Centro de Estudios Ambientales del Mediterráneo (CEAM), Unidad Mixta de Investigación Universidad de Alicante-Fundación CEAM, PO Box 99 E-03080, Alicante, Spain e-mail: [email protected] J.J. Peguero-Pina Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5 07071, Palma de Mallorca, Balears, Spain T.S.Barigah H. Cochard INRA, UMR 547 PIAF, F-63100, Clermont-Ferrand, France T.S.Barigah H. Cochard Clermont Université, Université Blaise Pascal, UMR 547 PIAF, BP 10448 F-63000, Clermont-Ferrand, France E. Gil-Pelegrín Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Avenida de Montañana 930, E-50059, Zaragoza, Spain R. Aroca (ed.), Plant Responses to Drought Stress, DOI: 10.1007/978-3-642-32653-0_3, Springer-Verlag Berlin Heidelberg 2012 63
منابع مشابه
Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem.
Although cavitation and refilling cycles could be common in plants, it is unknown whether these cycles weaken the cavitation resistance of xylem. Stem or petiole segments were tested for cavitation resistance before and after a controlled cavitation-refilling cycle. Cavitation was induced by centrifugation, air drying of shoots, or soil drought. Except for droughted plants, material was not sig...
متن کاملPatterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography.
Embolism formation and spread are dependent on conduit structure and xylem network connectivity. Detailed spatial analysis has been limited due to a lack of non-destructive methods to visualize these processes in living plants. We used synchrotron X-ray computed tomography (microCT) to visualize these processes in vivo for Juglans microcarpa Berl. saplings subjected to drought, and also evaluat...
متن کاملCoping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.
Embolism repair and ionic effects on xylem hydraulic conductance have been documented in different tree species. However, the diurnal and seasonal patterns of both phenomena and their actual role in plants' responses to drought-induced xylem cavitation have not been thoroughly investigated. This study provides experimental evidence of the ability of three Mediterranean species to maintain hydra...
متن کاملHydraulic disruption and passive migration by a bacterial pathogen in oak tree xylem
Xylella fastidiosa (Xf) is a xylem-limited bacterial pathogen that causes leaf scorch symptoms in numerous plant species in urban, agricultural, and natural ecosystems worldwide. The exact mechanism of hydraulic disruption and systemic colonization of xylem by Xf remains elusive across all host plants. To understand both processes better, the functional and structural characteristics of xylem i...
متن کاملBreakthrough Technologies In Vivo Observation of Cavitation and Embolism Repair Using Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) was used to noninvasively monitor the status of individual xylem vessels in the stem of an intact, transpiring grape (Vitis vinifera) plant over a period of approximately 40 h. Proton density-weighted MRI was used to visualize the distribution of mobile water in the stem and individual xylem vessels were scored as either water or gas filled (i.e. embolized). The...
متن کامل